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The lattice Boltzmann equation (LBE) is an alternative kinetic method capable
of solving hydrodynamics for various systems. Major advantages of the method are
due to the fact that the solution for the particle distribution functions is explicit, easy
to implement, and natural to parallelize. Because the method often uses uniform
regular Cartesian lattices in space, curved boundaries are often approximated by a
series of stairs that leads to reduction in computational accuracy. In this work, a
second-order accurate treatment of the boundary condition in the LBE method is
developed for a curved boundary. The proposed treatment of the curved boundaries
is an improvement of a scheme due to O. Filippova and &ndt(1998,). Comput.
Phys.147, 219). The proposed treatment for curved boundaries is tested against
several flow problems: 2-D channel flows with constant and oscillating pressure
gradients for which analytic solutions are known, flow due to an impulsively started
wall, lid-driven square cavity flow, and uniform flow over a column of circular
cylinders. The second-order accuracy is observed with a solid boundary arbitrarily
placed between lattice nodes. The proposed boundary condition has well-behaved
stability characteristics when the relaxation time is close/®, the zero limit of
viscosity. The improvement can make a substantial contribution toward simulating
practical fluid flow problems using the lattice Boltzmann methagl 1999 Academic Press

I. INTRODUCTION

There has been a rapid progress in developing and employing the method of the la
Boltzmann equation (LBE) [1-3] as an alternative computational technique for solvi
complex fluid dynamic problems (see the comprehensive reviews in [4, 5]). In a traditio
method for computational fluid dynamics (CFD), the macroscopic variables, such as
locity u and pressur@, are obtained by solving the Navier—Stokes (NS) equations [6—&
The lattice Boltzmann equation approximates the kinetic equation for the particle m
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distribution functionf (x, &, t) on the mesoscopic level, such as the Boltzmann equatic
with the single relaxation time approximation [9],

of 1
— & Vi=—Z(f - O 1
ot T A( ), (1)

where¢ is the particle velocityf © is the equilibrium distribution function (the Maxwell—
Boltzmann distribution function), ankdis the relaxation time. The right hand side (RHS)
term models the effect of the fluid viscosity on the molecular level through the collisic
(relaxation) process. The macroscopic quantities (such as mass deasitymomentum
densitypu) are the hydrodynamic moments of the distribution functfgn

b= / F(x, €. d% (2a)
pou = /ﬁf(x, £t d3¢. (2b)

It has been shown that the velocity spgcean be discretized into a finite set of points
{&,} without affecting the conservation laws [10-12]. In the discretized velocity space t
Boltzmann equation (1) becomes

fy 1
az)_t+€“'Vf°‘=_X(f“— f9)  (@=0,1,2,...,8for2-D) (3)

for the distribution function of discrete velocitiefs (x, t) = f (X, &,, t). The equilibrium
distribution function, f(¢?, and the discrete velocity s¢¢,} can be derived explicitly
[10-12].

For the 2-D square lattice shown in Fig. 1, we es¢o denote the discrete velocity set,
and we have [13]
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FIG.1. A 2-D, 9-bit (or 9-velocity) lattice.



BOUNDARY TREATMENT IN THE LBE METHOD 309

e =0, fora =0,
e, = (co (o — D /D), sin((« — D)z /4)) fora =1,3,5,7, (4)
e, = V2(co(a — D) /4), sin(( — 1)r/4))  fora =2,4,6,8,

wherec = §x/5t, 6, andst are the lattice constant and the time step size, respectively, a

3 9 3
fea _ 1+ e, . (e, -W2— ——u-
o = PWe |1t S8 U+ S (6 W - Suu), (5)
where
4/9, a=0
we =4 1/9, «a=1,35,7 (6)

1/36, a=246,8.

With the discretized velocity space, the hydrodynamic moments are given by

8 8
o= f,= Z f (e9 (7a)
a=0 a=0
and
8 8
pu=> efu=) e f (7b)
a=1 a=1

The speed of sound of this modelis= c/+/3, and the equation of state is that of an idea
gas,

p = pcs. (8)

Equation (3) is one of numerous ways to model the transport equatibnked. (1).
Based on the Chapman-Enskog analysis, the solutiofi,for;, t) may be expanded in
the form of

f, (6 t) = £ t) + FPX )+, (9)

wheref® in Eq. (9) is formally smaller thari, (®? in the expansion. Substitution of Eq. (9)
into Eq. (3) leads to

f (e9
ot

fOX 1) =—1 +e, VI (10)
Proceeding with the Chapman—Enskog analysis, it can be shown that the Euler equa
can be recovered from the solution f6f*® and the NS equations are recovered in the
near incompressible limit (i.e., the Mach numibé&e |u|/cs <« 1) by the first two terms in
Eq. (9). The viscosity of the fluid is

V= )»Ci. (11)
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Equation (3) can be further discretized in space and time. The completely discreti:
form of Eq. (1), with the time steft and space steg,dt, is

uai+aﬁnt+80—-uuhnzz—}[QOmt)—ff@ahUL (12)
T

wheretr = A/8t, andx; is a point in the discretized physical space. The above equation
the lattice Boltzmann equation [1-3] with Bhatnagar—Gross—Krook (BGK) approximati
[9]. The left-hand side (LHS) of Eq. (12) is physically a streaming process for particl
while the RHS models the collisions through relaxation.

Although the lattice Boltzmann equation historically originates from the lattice gas c
lular automata [14, 15], it is indeed a special finite difference form of the continuo
Boltzmann kinetic equation, i.e., the LHS of Eq. (3) is discretized along the direction of t
characteristic line with discretization of phase space and time tied together [10, 11]. "
leading order truncation error of such a discretization is then taken into account exactly
modifying the viscosity in the NS equation derived from Eq. (12) to

v=(z—%>§&. (13)

The positivity of the viscosity thus requires that- 1/2. The lattice Boltzmann scheme
consists of two computational steps,

collisionstep  f,(xi, ) — fa(xi, ) = == [fo(xi, ) — £, 0]  (14a)

y VI

—

streaming step  f, (X +€,8t,t +8t) = f, (X, 1), (14b)
where f, and f,, denote the pre- and post-collision state of the distribution function, re
spectively. The advantages of solving the lattice Boltzmann equation over the NS equat
can now be seen. In the kinetic equation fgrgiven by Eq. (3), the advection operator
is linear in the phase space whereas the convection term is nonlinear in the NS equa
In traditional CFD methods, the pressure is typically obtained by solving the Poisson
Poisson-like equation derived from the incompressible NS equations that can be time «
suming. In the LBE method, the pressure is obtained through an extremely simple eque
of statep = pc2. This is an appealing feature of the LBE method. The discretized Eq. (1
for f, is explicit in form, easy to implement, and natural to parallelize. The collision ste
is completely local. The streaming step takes very little computational effort at every tir
step.

However, unlike solving the NS equations for which the non-slip conditiorufon a
solid wall is satisfied at the macroscopic level, there is no corresponding, physically ba
boundary condition foif, on a solid wall at the mesoscopic level. For a lattice node locate
on the fluid side ak¢, as illustrated in Fig. 2, Eq. (14b) clearly indicates a need for th
information of f,, atx, on the solid side. Therefore all the effort in the previous treatmer
of the boundary conditions in the LBE models is mainly focused on the calculatiép of
moving from the wall into the fluid region. In previous works of the LBE, the most ofte
used boundary condition on the wall is the so-called bounce-back scheme [16-18]. In
bounce-back scheme, after a particle distributfgrstreams from a fluid node a to a
boundary node at,, along the direction o&,, the particle distributiorf, scatters back to
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FIG. 2. Layout of the regularly spaced lattices and curved wall boundary.

the nodex; along the direction oé;(=—e¢,) as f,. Since the wall positiow,, was forced

to be located axy, this is referred to as bounce-back on the node (BBN) [19]. Howeve
a finite slip velocity at the stationary wall exists [20, 18] and the accuracy for the flc
field is thus degraded due to the inaccuracy of the boundary conditions [17]. In simulat
suspension flows using the LBE, Ladd placed the solid walls in the middle between
lattice nodes [21]. This is referred to as bounce-back on the link (BBL). It has been shc
that the BBL scheme gives a second-order accurate result for straight walls [24, 18]. Nc
et al. developed a second-order accurate boundary condition to confipuiat it is only
applicable to straight walls in triangular lattice space [22] &tlal. generalized the scheme
of Noble et al. to arbitrary lattice [18]. Cheet al. placed the wall on the lattice node so
thatxy, is one lattice inside the wall [23]. They used an extrapolatiof,adn the fluid side
(including the wall node) to obtaify, atx,. Zou and He proposed to apply the BBL scheme
only for the non-equilibrium part of, at the wall [24].

For a curved geometry, the use of BBL requires approximation of the curved solid bou
ary by a series of stair steps. The geometric integrity cannot be preserved by such ar
proximation. For high Reynolds number flows, the integrity of geometry is important sin
the vorticity generation and stress distributions are sensitive to the geometrical resolut
To this end, He and Luo proposed to use the LBE with nonuniform grid with second or
interpolations [10, 25, 26]. He and Doolen further applied the interpolation to the LE
with curvilinear coordinates or body-fitted coordinates [27]. Mei and Shyy solved Eq. (
in curvilinear coordinates using the finite difference method [28]. While the wall geor
etry is accurately preserved in body-fitted coordinates, the flexibility to handle compl
geometries is maintained by using the numerical grid generation techniques commo
the Navier—Stokes solvers. It should be noted that perhaps the most profound and ri
ous theoretical treatment of the boundary condition along the wall is given by Ginzbot
and d’Humeres [29]. The scheme proposed by Ginzbourg and d'ldtasiis local and
accurate up to second order in Chapman—Enskog expansion. However, this work ha:
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attracted sufficient attention because its implementation is not as easy as the bounce-
scheme.

In this work, a robust, second-order accurate treatment for the distribution furfgtion
near a curved boundary is developed based on the method recently proposed by Filip
and Hinel (hereinafter referred to as FH) [30]. In Ref. [30], the boundary condition f
f, on the solid side is evaluated using Eq. (3) fgr and the Taylor series expansion in
both space and time fdf, near the wall. FH reported numerical results for a uniform flow
over a cylinder [30]. However, it is found in this work that when tested in a pressure driv
channel flow (see implementation and discussions in Section Il) there is a strong bound
condition-induced instability when the distance from the wall to the first lattice on the flu
side is less than half of the lattice size.

Using the Taylor series expansion for the veloaitynear the wall, a new treatment
for f, near a curved wall is proposed in this work. While maintaining a second-ord
accuracy of the solution in handling curved walls, the computational stability is improv
so that lower viscosity, or higher Reynolds number, can be attained in the LBE simulatic
The new boundary condition treatment is tested systematically to assess the tempora
spatial accuracy and robustness in 2-D channel flow with constant and oscillating pres
gradients, flow due to an impulsively started wall, lid-driven square cavity flow, and flow ov
a column of circular cylinders. Detailed comparisons for the flow field are made with eitt
analytic solutions or well-resolved numerical solutions of the Navier—Stokes equations
using a finite difference method. The improved boundary treatment represents a signifi
step towards solving practically relevant flow problems using the LBE method.

IIl. FORMULATION FOR THE IMPROVED BOUNDARY CONDITION

Filippova and Hihel [30] considered a curved boundary lying between the lattice nod
of spacingsx, as illustrated in Fig. 2, and briefly presented the derivation of their scher
for the treatment of a curved boundary. However, they did not offer explanation to just
the theoretical basis of their method. It is instructive to first reexamine their derivati
thoroughly. Based on the insight gained, an improved boundary treatment is then propc

A. Reexamination of and Comments on the Filippovanél Treatment

The macroscopic flow has a characteristic length .ofhe lattice nodes on the solid and
fluid side are denoted ag andx;, respectively, in Fig. 2. The filled small circles on the
boundaryx,,, denote the intersections of the wall with various lattice links. The bounda
velocity atx,,, the intersection with the wall on the link betwegnandx;, is u,,. The
fraction of an intersected link in the fluid region4s that is,

|Xf - Xw|

= . 15
[Xf — Xp (13)

Obviously, 0< A < 1 and the horizontal or vertical distance betwggm@andx,, is A - §X

on the square lattice. Suppose the particle momentum movingXfatm x;, is e, and the
reversed one fromy, to x¢ is e; = —e,. After the collision step,ﬂ, on the fluid side is
known, but not on the solid side. (Hereafter we shall &sand f; to denote the velocity
and the distribution function coming from a solid node to a fluid node fafigithe unknown
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to be computed.) To finish the streaming step,
fa(Xt = Xp + €50t, t + 8t) = fz(xp, 1), (16)

it is clear that fz(xy, t) is needed. To construdtz(xp, t) based upon some known in-
formation in the surrounding, Filippova andakél essentially proposed using the lineal
interpolation [30],

. . 3
fa(p, 1) = (1 — x) fo(Xs, t) + x F5 (X, 1) + 2wep 585 - Un, 17

whereu,, = u(x,, t) is the velocity at the wall angt is the weighting factor (to be de-
termined) that controls the linear interpolation (or extrapolation) betwiegr;, t) and
f(xp, t), afictitious equilibrium distribution function given by

5 (X, 1) = wep (X1, 1) |1+ C—?;ea “Upt + %(ea up)? - %Uf “ug|. (18)
In the aboveu s = u(x;, t) is the fluid velocity near the wall angl); is to be chosen. It is
emphasized here that the weighting factodepends on howi,s is chosen. However, the
choice ofuy¢ is not unique. For example, eithegs =u; or a linear extrapolation using
Upt = (A — Dus /A + U, /A appears reasonable.
To determingy in Eq. (17), FH considered flows under the condition

L/(cT) «1, (19)

i.e., the flow has an intrinsic characteristic time sdathat is much larger than the advection
time on the lattice scald, /c. This “slow-flow” condition enabled FH to approximate
fa(X¢, t + 8t) in Eq. (16) by fa(xs, 1),

ofy
fz(Xt = Xp + €58t, t + 8t) = f(;(Xf,t)-i-(StW + -
For the purpose of the order-of-magnitude estimate, it is seerOt(tet;/dt) = O(fz/T)
so that

§x L

ot
fa(Xs, t4+t) = fz(Xs, 1) {1+O<T)] = fz(Xs,1) {1+O< S

>} ~ fz(x¢,1). (20)

It is noted that under condition (19) the neglected terms at@(éd! ﬁ) which are much
smaller than th@(‘%) terms of present interest (in deriving an accurate boundary conditic
for f7(Xp, t)). Applying the Chapman—Enskog expansion in the form given by Egs. (9)—(1
and invoking the “slow flow” approximation, one obtains

3§q
fa(xe, t) = fofe‘”(xf,t)—*[ ot +e&-vffq] T
~ 2%, t) —rey - VESI4 .. (21)

For f{°? given by Eq. (5), the leading order term¥hf<® is given bypw, (3/c?)es - Vu
since the rest are higher order terms in the near incompressible flow limit. Noticing t
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A =1ét, EqQ. (21) becomes
9 3
fa(xs, t) = fy (xf,t)—ratpwagea-Vwea
€ 3 3
= f, (X5, 1) = 2pwa FUt - € — T8lowa 56 - VU - & (22)

which approximates the LHS of Eq. (16). To expand the RHS of Eq. (16) in terms of t
small computational parameter

—=—«1 (23)
itis first noted thatf (' (xy, t) in Eq. (18) can be expressed as

3
£, 1) = £8P (X, 1) + Wap 58 - (Upf — Ut) (24)
so that the RHS of Eq. (16), or Eq. (17), can be rewritten as

f&(Xp, 1)

3
~ e, )+ (1 — )L — 1) fPxe, 1) + Wap 56+ (XUpf — U5 = 2Uy)
3
= 1800, 0 = 1= 0 — Ditwap 56 - VU &
3
tWap 58 (XUpf — xUf — 2Uy). (25)

Based on linear interpolationys ~ (A — 1)us/A + u, /A, expanding the velocity s near
the wall &, ) using Taylor series, and noticing that — x; = §te,, one obtainsuy; —

us ~ §tVu - e,. Equating Egs. (22) and (25) and matching terms lineabt iresults in
x = (2A — 1)/1. Forups =u¢, we haveups — uf =0 in Eq. (25). Matching t@(st) then
requiresy = (2A — 1)/t = (2A —1)/(t — 1). FH found thaup; = (A — D)us/A +u, /A

gives computationally stable results only far> 1/2. Hence, they proposed that

=

Upt = (A — Dus/A +u,/A and x=0R2A-1/t for A > (26)

2
and
1
Upf = Ug and Xx=Q2A-1)/(t-1) for A < > 27)

To recapitulate, there are three independent assumptions that have been made i
foregoing derivation. These are: (i) the Chapman—Enskog expansion in the form giver
Egs. (9)—(10) is valid; (ii) the intrinsic time of the unsteady flow must be large compar
with the advection time on the lattice scale given by Eq. (19); (iii) the lattice space mt
be small compared with the characteristic length scale of the flow as given by Eq. (23
that the Taylor series expansion for the velocity field near the wall is valid. There have b
a large number of papers in the existing literature regarding the validity and usefulnes
Chapman—Enskog expansion for the solution to the Boltzmann equation. The “slow flc
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FIG. 3. Lattice distribution in channel flow simulations with arbitraky

condition is introduced to simplify the derivation of the boundary condition fijgrthe
implication of this assumption will be briefly addressed laterin comparing the computatiol
results with that based on the conventional bounce-back scheme. The last assumptiol
typical computational resolution requirement.

Equation (17) is essentially a linear interpolation (or extrapolation) and is used contil
ously in the computation. When the weighting facfobecomes too large, instability may
develop. ForA >1/2, |x| =|2A — 1|/t is always less than 2 since the positivity of the
viscosity in the LBE scheme requires- 1/2. ForA <1/2, |x|=1(2A —-1)/(zr — 1)| and
it may become too large wheris near 1. To illustrate this point, a fully developed pressur:
driven 2-D channel flow is considered. The grid arrangement is shown in Fig. 3. For ste
flow, a constant pressure gradiérp along thex-direction is applied and can be treated as
a body force. This is included [32] after the collision step by

- ~ 3d
Fooi,t) = Falxio ) — was Pe, - %

L 2
czdx e (28)

whereX is the unit vector along the-axis. The boundary condition fdr, (Xi, t) on the wall
follows those given by Egs. (17), (18), (26), and (27). At the irlet ) and exit { = Ny,
in which Ny is the number of lattices in the-direction) the following is imposed,

fo(=1])=fali =2, ), (29)
foz(i = Nij): fa(i = Nx_lsj)~ (30)

With Eq. (29), the velocity profile at the inlai, (i =2, j), is not needed. Instead, the fully
developed velocity profile is sought as part of the solutions. In this part of the investigati
Ny =35 is used. The exact solution for the velocity profile (given by Eq. (36)) is use
as the velocity initial condition which differs from the final steady state solution due
numerical errors. The equilibrium distribution functid®® based on the exact solution



316 MEI, LUO, AND SHYY

a 2 0 1 1 1 1 1
’ + + + ++ o+ + + +
+ + + ++ o+ + + +
+ + + ++ + + + +
+ + + ++ 0+ + + +
1.5 + + + ++ + + + + o
1 + + + ++ + + + +
+ + + ++ + + + +
T  §ee g % i 4+ 1 + + +
6 o 8 TR e Fee i +
1.0 6 [ o 00 © o g T 4. - -
° [ 6o o o Pl
o o o oo o o ,,4"& +
[ o o go o /,g” + +
g & 8 R&¥ i 3 3
05 4 & + -+
+ stable
° unstable
0.0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 A
b 14 1 2 n n n ] 2 " 1 " 1 n " n 2 1
13 stable region L
1.2 7 B
1.1 B
T
1.0 7 B
] unstable region
0.9 1 B
0.8 1 F
0.7 7 r
0.6 stable region
0.5 T T T T T —
0.0 0.1 0.2 0.3 0.4 0.5

FIG. 4. (a) Regions of stability and instability in the LBE computation for fully developed 2-D channel flov
using FH’s boundary condition, Egs. (17), (18), (26), (27), fokx 1/2. (b) Regions of stability and instability
in the LBE computation for 2-D channel flow entrance problem using FH'’s boundary condition, Egs. (17), (1
(26), (27), forA <1/2.

for the velocity profile is used as the initial condition ffyr. The pressure gradient is set to
% = —1.0 x 1078, All computations are carried out using double precision.

For A <1/2, it is found that the computation is unstable for certain range of values
7. Figure 4a shows the stability—instability boundaries in the\) space obtained from a
large number of computations. Far< 0.2, the computation becomes unstable whenl.
The large instability region is an apparent source of concern for FH’s schemewhdrn2
since lower viscosity can only be achieved wheis close to }2.

One may speculate that the instability in the above example results from the lack
specifying an inlet velocity profilai,(y), or due to the extrapolation df, at the inlet given
by Eg. (29). To examine this possibility, a channel flow entrance problem is consider
Uniform velocity profilesuy (y) = —(H?/12pv)(dp/dx) anduy(y) =0inwhichH is the
channel height, are specifiediat 1.5 (half-way between the first and second lattices) an
the distribution functiond, (i =1, j) for « = 1, 2, and 8 are obtained using Eq. (17) with
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x =0 in accordance witth =1/2 ati =1.5. The boundary conditions on the wall are
based on Egs. (17), (18), (26), and (27). The exit boundary condition fdy, thes given by
Eq. (30). Hence the extrapolation féy at the inlet is completely eliminated and the velocity
profiles at the inlet are exactly given. Two types of initial conditions are used. Whene
possible, the equilibrium distribution functions corresponding to the uniform inlet veloci
are specified at= 0 throughout the flow field. This works for relatively larger values of
However, instability can be encountered wheis considerably larger than the upper dast
curve shown in Fig. 4a for the same value®of<1/2). A second type of initial condition is
thus implemented. A converged solution at a relatively large valadiised as the initial
condition for a smaller value aof. The value oft is incrementally decreased to obtain the
converged solutions for the new, smaller values 0Vhen the actual instability region is
approached, the incrementins maintained as small as 0.01 or 0.005. In the computatiol
g—‘; =—1.0x 10°%, Ny = 35, andNy = 65 are used. When the Reynolds number is low (du
to the use of the small pressure gradient and laryjethe exit velocity profile is very close
to the exact solution corresponding to the fully developed channel flow which validates
solution procedure.

The stability—instability boundaries obtained through a large number of computatic
are shown in Fig. 4b. It is noted that the stability—instability boundaries are very similar
that shown in Fig. 4a for the fully developed channel flow despite the dramatic differer
in the inlet boundary condition. Thus the source of the instability must result from t
implementation of the solid wall condition. An alternative scheme must be developec
overcome this shortcoming.

B. Improved Treatment for a Curved Boundary

We realize that the flexibility in the construction &f* (xp, t) is the key to achieving an
improved computational stability as well as accuracy. Sinee(2A — 1)/(r — 1) given
by Eqg. (27) leads to a larger value gfwhent is close to 1, it is desirable to reduce the
magnitude ofy by increasing the magnitude of the denominator in the expressiop.for
For A > 1/2, ups is the fictitious fluid velocity inside the solid and the denominatoryfor
ist.ForA < 1/2, ups was chosen by FH to he; which is the fluid velocity ak; and it
leads to £ — 1) in the denominator fog. Thus, we propose to use Eq. (26) fr> 1/2
and use

Upf = U = U (X5 + €561, 1) for A < % (32)
Thus
Upf — Uf = Us (X5 + €58t,t) —us(X¢,t) = —=8tVu - g,. (32)
This requires
—tl—x)A-1/71)—x=2A—1 (33)

to match theO(8t) terms in equating Egs. (22) and (25). Hence

x=2A-=-1) /(-2 forA<%. (34)
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FIG. 5. (a) Regions of stability and instability in the LBE computation for fully developed 2-D channe
flow using the present boundary condition, Egs. (17), (18), (26), (31), (347 forl/2. (b) Regions of stability
and instability in the LBE computation for the 2-D channel flow entrance problem using the present bound
condition, Egs. (17), (18), (26), (31), (34), far< 1/2.

To test the improvement in the stability, the steady state, fully developed, pressure dri
2-D channel flow is again considered. Equations (31), (34) are used in lieu of Eq. (27).
rest of the implementation is exactly the same as described in the last section. Figur
shows the stability—instability boundary in tte A) space for the fully developed channel
flow. By comparing Fig. 5a with Fig. 4a, the improvement in the stability of the prese
treatment for this simple geometry case is clearly seen.

For the channel flow entrance problem, boundary conditions at the inlet and exit ¢
the procedure for specifying the initial conditions are the same as described in the
section. Equations (31), (34) are used to replace Eq. (27) for the solid wall. The stabili
instability boundary in théz, A) space for the entrance flow problem is shown in Fig. 5b
Close agreement in the stability—instability boundaries between Figs. 5a and 5b sugc
that the improvement in the computational stability is not related to the treatment of
inlet boundary conditions. The improvement results rather from the different treatmen
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the solid wall boundary condition. A direct consequence of this improvement is that lov
values ofz, or lower viscosityy, can now be used.

One may speculate at this point that(x; + 2e;5t, t) can also be used far,s when
A <1/2. This would further improve the stability singe=(2A — 1)/(r — 3). This is
correct in principle. However, since the usewaf(xs + e;dt, t) asups already allows the
use ofr whose value is close to/2, there is little practical need to use that is too far
away from the wall.

For transient flows, a second-order extrapolation can be used for

1
Upf = wmi)+guuww [U(Xy, t) — (14 A)u(xs, 1)

+ AL+ A)

1
+ Au(Xs + ;t, )] for A > > (35)

This treatment helps to improve the accuracy in the velocity approximation wixet) is
not well resolved near the wall. Finally, it is easily seen that the present boundary condi
treatment can be extended to 3-D flow problems involving curved geometry. The effic:
of such an extension will be examined in another paper.

Ill. RESULTS AND DISCUSSIONS

For the proposed boundary condition treatment to be useful, several issues need f
addressed: spatial and temporal accuracy, ability to handle geometric singularity, anc
flexibility to handle complex geometry. Channel flows with constant and sinusoidally osc
lating pressure gradients with analytic solutions are used to assess the spatial and tem
accuracy. The Stokes first problem (i.e., the flow due to an impulsively started wall) allo
one to examine the response of the computed flow field to an imposed singular accelera
The standard lid-driven cavity flow has a bounded domain but possesses stress or vor
singularities near the corners between the moving and stationary walls. Finally, flow ovi
column of circular cylinders is the case used to assess the impact of the boundary treat
on the accuracy of the flow field around a curved boundary.

A. Pressure Driven Channel Flows

At steady flow, the exact solution for tixevelocity profile is given by

1dpH?2
Uexac(y) = — > £ ;(772 - ), (36)

whereH = Ny —3+4+2A andp=y/H = (j —2+ A)/H. To assess the computational error
of the LBE solution of the velocity, e(Y), the following relative L-norm error is defined

1/2

_ {foH [uee(y) — Uexacl(Y)]z dy}

]1/2

E>
[ U2 ey dy

37

With the oscillating pressure gradie@ =Be'“!, the exact solution can be easily
expressed in complex variables. An important parameter in this flow is the Stokes nurnr
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Stdefined as

H 2
St= @ (38)
v

The Stokes number is the ratio of the channel helgjtib the thickness of the Stokes layer
J/v/w. Since the error can vary with time, a time average over one pefieddr/w) is
needed and the relative error is

1/2

E, = {fonoH [uBe(Y, t) — Uexac(y, t)]*dy dt}
[fOT fOH ugxact(y’ t)ydy dt] 12

In the BGK model At = Ax = Ay = 1. Comparing with the channel heigHt= N, — 3+
2A, the dimensionless grid size (or grid resolution}His.

Figure 6a shows the dependence of the relativerorm error on the channel height
H for £ =0.55 andA =0.0, 0.25, and 0.5. A maximum value &f, =131 is used. The
second-order accuracy is demonstrated in the rangé ofvestigated. It has been well
established that the accuracy of the LBE method for the interior points is of second or
The fact that the overall accuracy is of second order in the present case means tha
accuracy in the boundary condition is at least of second order. It is worth noticing that
derivation given in Section Il ensures thigtis second-order accurate near the wall. It doe:
not guarantee the second-order accuracy of the velocity field near the wall. To address
issue, the wall slip velocity,, = ux(y = 0), is evaluated using a second-order extrapolatiol
based oruy(y=A), ux(y=1+ A), andux(y=2 + A). Since the true wall velocity in
the pressure driven channel flow is zero, the wall slip velogifyprovides a measure of
the accuracy for the treatment of the wall velocity. Figure 6b shows the dependange of
normalized by the centerline velocitiy.x= —(H?/8pv)(dp/dx), onH for A =0.0, 0.25,
and 0.5 witht = 0.55. Quadratic convergence is clearly observed in all three cases wh
demonstrates the second-order accuracy of the velocity field near the solid wall. Thi
entirely consistent with the results shown in Fig. 6a which involves global converger
rather than the locgly = 0) convergence. Figure 6¢ shows the relative error as a functic
of A using the present boundary treatment (Eqgs. (17), (18), (26), (31), (34)Hax & 1.
The error in the range of 8 A <1/2 is comparable to that in the range of2l< A < 1.
The present boundary condition treatment does not induce larger computational error
is substantially more robust. Furthermore the second-order accuracy is achieved in gel
by the present treatment far < 1/2.

Figure 7 shows the dependence of the relatiyenorm error on the channel height
in the oscillating pressure driven channel flow for Stokes nurgiberH ./w/v =1 and 8.
For St= 1, the Stokes layer is as thick as the channel height HAFe10.25, 0.5, and 0.75,
second-order accuracy in space is clearly demonstrated. Since the tiné¢ st&yBE is
equal to the spatial resolutiatx, the accuracy in time must also be of second-order i
order for the time-averageld,-norm error to have a slope of 2 in Fig. 7. F8t=8, the
Stokes layer thickness is abouyt8lof the channel height so that the computational erro
due to the insufficient resolution of the Stokes layer is a significant part of the error. |
A =0.25, the first lattice in the flow field is only a quarter of the lattice size away fror
the wall. The Stokes layer is thus better resolvedAet 0.25 (denoted by solid circles in
Fig. 7) than forA = 0.5and 0.75. However, &3 increases, the difference betwete= 0.25
andA =0.5 and 0.75 becomes smaller since all have reasonable resolutions in the St

(39)



1=0.55

Relative L , -error

——

10° 10} 102 10°

1=0.55

Ifu max

lu

107 e

—°— 05

C 0.004 ! : L . L . L
1=0.6

dp/dx=-E-06
H=32+2A

00037 .o

O

With Egs. (26,27,31,34) O

—+—  With Egs. (35,27.31,34) o

Relative L , -error
=
=
S
%)
&

0.001 7

0.000 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
A

FIG. 6. (a) Dependence of relative,-norm error on the lattice resolutidd = N, — 34 2A, in steady state
pressure-driven channel flow simulations. (b) Quadratic convergence of the wall slip velocity in steady s
pressure-driven channel flow simulations. (c) Relatiyenorm error as a function ok in steady state pressure-
driven channel flow simulations.

321



322 MEI, LUO, AND SHYY

10° L
A
1=0.505 *® 0.25
St=8 a 05
a = 075
1073 ‘q\ 3
5
=4
@
E
£ 10724 3
g
é A “OR r
= 1 o g e p
& —o- N
i 1=0.6 0.25 o W e
1073 a0 0Ny 3
St=1 - \g
-o-0.75
107 T
10° 10! 102

Channel height H in lattice unit

FIG. 7. Dependence of the,-norm error on the lattice resolutidd = N, — 3+ 2A in oscillating pressure
driven channel flow. Stokes numb@t=H /w/v.

layer. Although the slope for the error curve far=0.25 is observed to be about 1.5 that
is less than 2, it is an indication of the better-than-expected accuracy at the low res
tion end.

B. Stokes First Problem: Flow Due to an Impulsively Started Wall

Forawalllocated af = O thatis impulsively started, an unsteady Stokes layer of thickne:
O(+/vt) develops near the wall. For a fixed-grid computation, the error at small time
expected to be large due to insufficient spatial resolution. In the LBE method, this is a
compounded by the use of fixétl (=35x =38y =1). Figure 8 shows the velocity profiles
att =100 (in lattice unit). The wall velocity i¥ = 0.1 in lattice unit. The relaxation time
t =0.52 gives kinematic viscosity =0.0067. Similar to the oscillating pressure driven
channel flow, the error is smaller féx = 0.25 than forA =0.5 and 0.75 due to a better
spatial resolution near the wall. Figure 9 shows the temporal variation of the relative
norm error defined as

— {fOOO[ULBE(y, t) — Uexac((y, 1)]? dy} 1/2 o
[fooo ugxact(y’ t) dy] vz

for A =0.25, 0.5, and 0.75. The result using the standardnce-back on the lin{BBL)

scheme, which always sets= 0.5, is also shown. The large relative errors in the beginnin
are due to the smaller values of the denominator in the above equation. It should be em
sized that this flow at small time is difficult to deal with for any computational technique di
to the singular acceleration and large spatial gradient. For an impulsively started Cou
flow, the long-time solution approaches the exact linear velocity profile because the L
method is a second-order accurate one. It is interesting to note that the present bour

E>
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FIG. 8. Velocity profiles at = 100 (lattice unit) of an impulsively started plate with various valuea ofhe
bounce back on the link (BBL) always sets=1/2.

condition treatment fon = 0.5 gives a slightly smaller error than the BBL scheme in thic
highly transient case. In such a transient flow, the computational accuracy in the near-
region is typically dictated by the near-wall spatial resolution which must be smaller th
the Stokes layer thickness in order to resolve the local flow field. In a finite differen
calculation for such a flowst andéx can be independently chosené¥ is not sufficiently

small, further reduction iagt will not lead to improvement in accuracy. At smalineither

the BBL scheme nor the present treatment resolved the Stokes layer so that the erroris|
After the Stokes layer grows to a certain thickness, the spatial resolution becomes adec
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FIG. 9. RelativeL,-norm error of the velocity profilel, (y) during the initial transient of the impulsively
started plate with various values &f. The “linear” version of the boundary condition corresponds to Eq. (26)
The “quadratic” version corresponds to Eq. (35). The BBL is limitedhte: 0.5 only.
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FIG. 10. Velocity profiles at the centeix/H =1/2) in lid-driven cavity flow with various values ok at
Re=100.

and the accuracy then improves. In view of the “slow flow” condition (19) introduced |
the derivation, the performance of the current boundary treatment is comparable or be
than the conventional bounce-back on the link scheme.

C. Flow in a Lid-Driven Square Cavity

Figure 10 shows the velocity profiles at the centei{ = 1/2) of the cavity of widthH
atRe= 100 withz = 0.6. Only 35x 35 lattices are used and the cavity widtlis= Ny, — 3+
2A =32+ A. This requires the lid velocity to bé = vRe/H = 3.33/H in the lattice unit. It
has a negligible compressibility effect far ~ 32. Awell-resolved finite difference solution
for the velocity field based on the stream function-vorticity formulation is also shown f
comparison. The velocity profile with = 0.1 agrees well with the finite difference solution.
For A =0.5, the result is rather reasonable with such a resolution. The difference is sligt
larger on the negative velocity part far=0.9. The corner singularity in stress (or vorticity)
is well handled forr = 0.6 and Ny = 35. However, forr close to 0.5 and withNy = 35,
the corner singularity induces wiggles in the velocity field. This issue will be examine
elsewhere. The flow field foRe= 1000 is obtained with 6% 67 lattices usingA =0.1,
0.5, and 0.9. Similar behavior in the velocity profiles is observed.

D. Uniform Flow over a Column of Circular Cylinders

To simulate the external flow over a single cylinder would require placing the out
boundary far away from the cylinder. In order to keep the computational effort at a reas
able level in using constant space lattices, a column of circular cylinders of nadiud
center-to-center distand¢ is considered instead. The flow field that needs to be comput:
is thus limited to—H <y < H. At y=—H, the lattice isj = 2. The boundary conditions



BOUNDARY TREATMENT IN THE LBE METHOD 325

at j =1 for the f,’s are given by the following symmetry properties,

fo(i, ) = fo(i, 3), f1(, D = f13, 3), f2(i, 1) = fa(i, 3),
fa(i, 1) = f+(, 3), fa(i, 1) = fe(i, 3), fs(i, 1) = fs(, 3), (42)
fe(i, 1) = f4(i, 3), fz(, D) = 10, 3), fs(i, 1) = f2(, 3).

Similar conditions hold ay = H for j = Ny. At the inlet, the uniform velocity =V, is
specified at =1.5. UsingA = 0.5, x =0, Eq. (17) is applied to obtain thig's ati = 1. At
the exit, a simple extrapolation is used,

fo(Nx, ) =2F,(Nx — 1, j) — fo(Nx — 2, j) fora =4,5,and 6 (42)

On the surface of the circular cylinder, Egs. (17), (18), (26), (31), and (34) proposed in t
paper are used to update the boundary conditions fof tise

Figure 11 shows the velocity profilex =0, y)/V for H/r =20 atRe=2Vr/v =10
usingr = 3.5. Two values of relaxation timg=0.505 and 0.525) are used. Foe 3.5, there
are only 7 lattices from the front to the back stagnation points. The finite difference solut
is obtained using body-fitted coordinates [33] and over 200 grid points are distributed als
the upper surface of the circle. These two solution with0.505 andr = 0.525 are virtually
identical to each other and they are both close to the finite difference solution. Figure
shows the centerlingy = 0) velocity variations, upstream and downstream, respectivel
at Re=10 and 40. The sharp gradient near the front stagnation point, the length of
separation bubble, the maximum of the separation bubble velocity, and the recover
the wake velocity are all in excellent agreement with the well resolved finite differen
solution.

As can be seen now, an important improvement of the present boundary condition tr
ment over the bounce-back scheme is that it can preserve the accuracy of the geor

10 ' I
o X=0
'] L
8 ] - oy -
' L
] [ - I‘=3.5; T =0.505
S 6 ] -
S r=3.5; 1=0.525
R L
R i
31 Re=10, H/r=20 :
'] L
1 ' I
0.0 0.5 10 "

FIG. 11. Velocity profiles atx = 0 for uniform flow over a column of cylinders. The cylinder has a diameter
(2r) of 7 lattice units. The cylinder center-to-center distakice: 70 lattice units.
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under consideration. To further demonstrate this point, consider flow over a circular cy
der of radius ) with the coordinate centered at the center of the cylinder.r=eB.4
and 3.8, the front stagnation points are located at—3.4 and 3.8, respectively. With
the bounce-back on the link (BBL) scheme, the front stagnation points in both cases
be placed ak = —3.5 which is half-way between the latticexat= —4 andx = —3 on the
centerline. In the present methafl,= 0.6 and 0.2 for = 3.4 and 3.8, respectively. The
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FIG. 13. Comparison of the velocity profiles at=0 forr =3.0, 3.2, 3.4, 3.5, 3.6, 3.8, and 4.0 for Rd0
andH/r =20.

difference inA can be accurately incorporated in the evaluatior gfxy, t). This implies
that although the boundary links for= 3.4 will be different from those for = 3.8, the
flow fields based on = 3.4 andr = 3.8 should be nearly the same when the coordinate
are normalized by the radius To validate this point, a series of computations are carrie
out forr =3.0,3.2,3.4,3.5,3.6, 3.8, and 4.0 forH/r =20 at Re=10. The profiles of
the dimensionless x-component veloaity/ U as a function ofy/r atx =0 are compared
for these seven different radiiin Fig. 13. Excellent agreement is observed. Figure 1.
compares the, /U as a function ofk/r at y =0 for both the downstream and upstream
regions for these seven different radii. Again, all seven cases compare very well even ir
near wall region. This clearly demonstrates that the present boundary condition treatr
has maintained geometric fidelity even with coarse grid resolutions.

It is noted that the interpolation fofz(xy, t) given by Eq. (17) is carried along the line
in the direction ofe,. The results for flow over a cylinder are quite satisfactory. Othe
interpolation procedures can certainly be devised to use more information on neighbo
lattices in the flow field. However, this will result in a lot more complications in the imple
mentation. It is not clear if such an attempt will necessarily lead to further improveme
over the present approach.

IV. CONCLUSION

In this work a second-order accurate boundary condition treatment for the latt
Boltzmann equation is proposed. A series of studies are conducted to systematically
date the accuracy and examine the robustness of the proposed boundary conditionin s
and unsteady flows involving flat and curved walls. Compared with the existing method
treating boundary condition in the lattice Boltzmann method, the proposed treatment
the following advantages: (i) It can preserve the geometry of interest without truncat
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FIG. 14. Comparison of the centerline velocity for=3.0, 3.2, 3.4, 3.5, 3.6, 3.8, and 4.0 for R40 and
H/r =20. (a) Upstream region; (b) downstream region.

it into a series of stair steps. (ii) The boundary treatment generally results in solutions
second-order accuracy for the velocity field in space, and in time for some cases. (jii) Cc
pared with the widely used bounce-back on the link scheme, the present treatment ¢
comparable or better results for the flow field under otherwise identical computatio
parameters.
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