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The lattice Boltzmann equation (LBE) is an alternative kinetic method capable
of solving hydrodynamics for various systems. Major advantages of the method are
due to the fact that the solution for the particle distribution functions is explicit, easy
to implement, and natural to parallelize. Because the method often uses uniform
regular Cartesian lattices in space, curved boundaries are often approximated by a
series of stairs that leads to reduction in computational accuracy. In this work, a
second-order accurate treatment of the boundary condition in the LBE method is
developed for a curved boundary. The proposed treatment of the curved boundaries
is an improvement of a scheme due to O. Filippova and D. H¨anel (1998,J. Comput.
Phys.147, 219). The proposed treatment for curved boundaries is tested against
several flow problems: 2-D channel flows with constant and oscillating pressure
gradients for which analytic solutions are known, flow due to an impulsively started
wall, lid-driven square cavity flow, and uniform flow over a column of circular
cylinders. The second-order accuracy is observed with a solid boundary arbitrarily
placed between lattice nodes. The proposed boundary condition has well-behaved
stability characteristics when the relaxation time is close to 1/2, the zero limit of
viscosity. The improvement can make a substantial contribution toward simulating
practical fluid flow problems using the lattice Boltzmann method.c© 1999 Academic Press

I. INTRODUCTION

There has been a rapid progress in developing and employing the method of the lattice
Boltzmann equation (LBE) [1–3] as an alternative computational technique for solving
complex fluid dynamic problems (see the comprehensive reviews in [4, 5]). In a traditional
method for computational fluid dynamics (CFD), the macroscopic variables, such as ve-
locity u and pressurep, are obtained by solving the Navier–Stokes (NS) equations [6–8].
The lattice Boltzmann equation approximates the kinetic equation for the particle mass
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distribution function f (x, ξ, t) on the mesoscopic level, such as the Boltzmann equation
with the single relaxation time approximation [9],

∂ f

∂t
+ ξ · ∇ f = −1

λ

(
f − f (0)

)
, (1)

whereξ is the particle velocity,f (0) is the equilibrium distribution function (the Maxwell–
Boltzmann distribution function), andλ is the relaxation time. The right hand side (RHS)
term models the effect of the fluid viscosity on the molecular level through the collision
(relaxation) process. The macroscopic quantities (such as mass densityρ and momentum
densityρu) are the hydrodynamic moments of the distribution functionf ,

ρ =
∫

f (x, ξ, t) d3ξ (2a)

ρu =
∫
ξ f (x, ξ, t) d3ξ. (2b)

It has been shown that the velocity spaceξ can be discretized into a finite set of points
{ξα} without affecting the conservation laws [10–12]. In the discretized velocity space the
Boltzmann equation (1) becomes

∂ fα
∂t
+ ξα · ∇ fα = −1

λ

(
fα − f (eq)

α

)
(α = 0, 1, 2, . . . ,8 for 2-D) (3)

for the distribution function of discrete velocitiesfα(x, t)≡ f (x, ξα, t). The equilibrium
distribution function, f (eq)

α , and the discrete velocity set{ξα} can be derived explicitly
[10–12].

For the 2-D square lattice shown in Fig. 1, we useeα to denote the discrete velocity set,
and we have [13]

FIG. 1. A 2-D, 9-bit (or 9-velocity) lattice.
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eα = 0, for α = 0,

eα = (cos((α − 1)π/4), sin((α − 1)π/4)) for α = 1, 3, 5, 7, (4)

eα =
√

2(cos((α − 1)π/4), sin((α − 1)π/4)) for α = 2, 4, 6, 8,

wherec= δx/δt, δx, andδt are the lattice constant and the time step size, respectively, and

f (eq)
α = ρwα

[
1+ 3

c2
eα · u+ 9

2c4
(eα · u)2− 3

2c2
u · u

]
, (5)

where

wα =


4/9, α = 0

1/9, α = 1, 3, 5, 7

1/36, α = 2, 4, 6, 8.

(6)

With the discretized velocity space, the hydrodynamic moments are given by

ρ =
8∑
α=0

fα =
8∑
α=0

f (eq)
α (7a)

and

ρu =
8∑
α=1

eα fα =
8∑
α=1

eα f (eq)
α . (7b)

The speed of sound of this model iscs= c/
√

3, and the equation of state is that of an ideal
gas,

p = ρc2
s. (8)

Equation (3) is one of numerous ways to model the transport equation off , Eq. (1).
Based on the Chapman–Enskog analysis, the solution forfα(x, t) may be expanded in

the form of

fα(x, t) = f (eq)
α (x, t)+ f (1)α (x, t)+ · · · , (9)

where f (1)α in Eq. (9) is formally smaller thanf (eq)
α in the expansion. Substitution of Eq. (9)

into Eq. (3) leads to

f (1)α (x, t) = −λ
[
∂ f (eq)
α

∂t
+ eα · ∇ f (eq)

α

]
. (10)

Proceeding with the Chapman–Enskog analysis, it can be shown that the Euler equations
can be recovered from the solution forf (eq)

α and the NS equations are recovered in the
near incompressible limit (i.e., the Mach numberM = |u|/cs¿ 1) by the first two terms in
Eq. (9). The viscosity of the fluid is

ν = λc2
s. (11)
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Equation (3) can be further discretized in space and time. The completely discretized
form of Eq. (1), with the time stepδt and space stepeαδt , is

fα(xi + eαδt, t + δt)− fα(xi , t) = −1

τ

[
fα(xi , t)− f (eq)

α (xi , t)
]
, (12)

whereτ = λ/δt , andxi is a point in the discretized physical space. The above equation is
the lattice Boltzmann equation [1–3] with Bhatnagar–Gross–Krook (BGK) approximation
[9]. The left-hand side (LHS) of Eq. (12) is physically a streaming process for particles
while the RHS models the collisions through relaxation.

Although the lattice Boltzmann equation historically originates from the lattice gas cel-
lular automata [14, 15], it is indeed a special finite difference form of the continuous
Boltzmann kinetic equation, i.e., the LHS of Eq. (3) is discretized along the direction of the
characteristic line with discretization of phase space and time tied together [10, 11]. The
leading order truncation error of such a discretization is then taken into account exactly by
modifying the viscosity in the NS equation derived from Eq. (12) to

ν =
(
τ − 1

2

)
c2

sδt. (13)

The positivity of the viscosity thus requires thatτ >1/2. The lattice Boltzmann scheme
consists of two computational steps,

collision step f̃ α(xi , t)− fα(xi , t) = −1

τ

[
fα(xi , t)− f (eq)

α (xi , t)
]

(14a)

streaming step fα(xi + eαδt, t + δt) = f̃ α(xi , t), (14b)

where fα and f̃ α denote the pre- and post-collision state of the distribution function, re-
spectively. The advantages of solving the lattice Boltzmann equation over the NS equations
can now be seen. In the kinetic equation forfα given by Eq. (3), the advection operator
is linear in the phase space whereas the convection term is nonlinear in the NS equation.
In traditional CFD methods, the pressure is typically obtained by solving the Poisson or
Poisson-like equation derived from the incompressible NS equations that can be time con-
suming. In the LBE method, the pressure is obtained through an extremely simple equation
of statep= ρc2

s. This is an appealing feature of the LBE method. The discretized Eq. (14)
for fα is explicit in form, easy to implement, and natural to parallelize. The collision step
is completely local. The streaming step takes very little computational effort at every time
step.

However, unlike solving the NS equations for which the non-slip condition foru on a
solid wall is satisfied at the macroscopic level, there is no corresponding, physically based
boundary condition forfα on a solid wall at the mesoscopic level. For a lattice node located
on the fluid side atx f , as illustrated in Fig. 2, Eq. (14b) clearly indicates a need for the
information of f̃ α at xb on the solid side. Therefore all the effort in the previous treatment
of the boundary conditions in the LBE models is mainly focused on the calculation off̃ α
moving from the wall into the fluid region. In previous works of the LBE, the most often
used boundary condition on the wall is the so-called bounce-back scheme [16–18]. In the
bounce-back scheme, after a particle distributionfα streams from a fluid node atx f to a
boundary node atxb along the direction ofeα, the particle distributionfα scatters back to
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FIG. 2. Layout of the regularly spaced lattices and curved wall boundary.

the nodex f along the direction ofeᾱ(=−eα) as f̃ α. Since the wall positionxw was forced
to be located atxb, this is referred to as bounce-back on the node (BBN) [19]. However,
a finite slip velocity at the stationary wall exists [20, 18] and the accuracy for the flow
field is thus degraded due to the inaccuracy of the boundary conditions [17]. In simulating
suspension flows using the LBE, Ladd placed the solid walls in the middle between the
lattice nodes [21]. This is referred to as bounce-back on the link (BBL). It has been shown
that the BBL scheme gives a second-order accurate result for straight walls [24, 18]. Noble
et al. developed a second-order accurate boundary condition to computef̃ α but it is only
applicable to straight walls in triangular lattice space [22]. Heet al.generalized the scheme
of Nobleet al. to arbitrary lattice [18]. Chenet al. placed the wall on the lattice node so
thatxb is one lattice inside the wall [23]. They used an extrapolation offα on the fluid side
(including the wall node) to obtainfα atxb. Zou and He proposed to apply the BBL scheme
only for the non-equilibrium part offα at the wall [24].

For a curved geometry, the use of BBL requires approximation of the curved solid bound-
ary by a series of stair steps. The geometric integrity cannot be preserved by such an ap-
proximation. For high Reynolds number flows, the integrity of geometry is important since
the vorticity generation and stress distributions are sensitive to the geometrical resolution.
To this end, He and Luo proposed to use the LBE with nonuniform grid with second order
interpolations [10, 25, 26]. He and Doolen further applied the interpolation to the LBE
with curvilinear coordinates or body-fitted coordinates [27]. Mei and Shyy solved Eq. (3)
in curvilinear coordinates using the finite difference method [28]. While the wall geom-
etry is accurately preserved in body-fitted coordinates, the flexibility to handle complex
geometries is maintained by using the numerical grid generation techniques common to
the Navier–Stokes solvers. It should be noted that perhaps the most profound and rigor-
ous theoretical treatment of the boundary condition along the wall is given by Ginzbourg
and d’Humières [29]. The scheme proposed by Ginzbourg and d’Humi`eres is local and
accurate up to second order in Chapman–Enskog expansion. However, this work has not
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attracted sufficient attention because its implementation is not as easy as the bounce-back
scheme.

In this work, a robust, second-order accurate treatment for the distribution functionfα
near a curved boundary is developed based on the method recently proposed by Filippova
and Hänel (hereinafter referred to as FH) [30]. In Ref. [30], the boundary condition for
fα on the solid side is evaluated using Eq. (3) forfα, and the Taylor series expansion in
both space and time forfα near the wall. FH reported numerical results for a uniform flow
over a cylinder [30]. However, it is found in this work that when tested in a pressure driven
channel flow (see implementation and discussions in Section II) there is a strong boundary-
condition-induced instability when the distance from the wall to the first lattice on the fluid
side is less than half of the lattice size.

Using the Taylor series expansion for the velocityu near the wall, a new treatment
for fα near a curved wall is proposed in this work. While maintaining a second-order
accuracy of the solution in handling curved walls, the computational stability is improved
so that lower viscosity, or higher Reynolds number, can be attained in the LBE simulations.
The new boundary condition treatment is tested systematically to assess the temporal and
spatial accuracy and robustness in 2-D channel flow with constant and oscillating pressure
gradients, flow due to an impulsively started wall, lid-driven square cavity flow, and flow over
a column of circular cylinders. Detailed comparisons for the flow field are made with either
analytic solutions or well-resolved numerical solutions of the Navier–Stokes equations by
using a finite difference method. The improved boundary treatment represents a significant
step towards solving practically relevant flow problems using the LBE method.

II. FORMULATION FOR THE IMPROVED BOUNDARY CONDITION

Filippova and Hänel [30] considered a curved boundary lying between the lattice nodes
of spacingδx, as illustrated in Fig. 2, and briefly presented the derivation of their scheme
for the treatment of a curved boundary. However, they did not offer explanation to justify
the theoretical basis of their method. It is instructive to first reexamine their derivation
thoroughly. Based on the insight gained, an improved boundary treatment is then proposed.

A. Reexamination of and Comments on the Filippova–Hänel Treatment

The macroscopic flow has a characteristic length ofL. The lattice nodes on the solid and
fluid side are denoted asxb andx f , respectively, in Fig. 2. The filled small circles on the
boundary,xw, denote the intersections of the wall with various lattice links. The boundary
velocity atxw, the intersection with the wall on the link betweenxb andx f , is uw. The
fraction of an intersected link in the fluid region is1, that is,

1 = |x f − xw|
|x f − xb| . (15)

Obviously, 0≤ 1 ≤ 1 and the horizontal or vertical distance betweenxb andxw is1 · δx
on the square lattice. Suppose the particle momentum moving fromx f to xb is eα and the
reversed one fromxb to x f is eᾱ =−eα. After the collision step,f̃ α on the fluid side is
known, but not on the solid side. (Hereafter we shall useeᾱ and fᾱ to denote the velocity
and the distribution function coming from a solid node to a fluid node, andfᾱ is the unknown
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to be computed.) To finish the streaming step,

fᾱ(x f = xb + eᾱδt, t + δt) = f̃ ᾱ(xb, t), (16)

it is clear that f̃ ᾱ(xb, t) is needed. To construct̃f ᾱ(xb, t) based upon some known in-
formation in the surrounding, Filippova and H¨anel essentially proposed using the linear
interpolation [30],

f̃ ᾱ(xb, t) = (1− χ) f̃ α(x f , t)+ χ f (∗)α (xb, t)+ 2wαρ
3

c2
eᾱ · uw, (17)

whereuw ≡ u(xw, t) is the velocity at the wall andχ is the weighting factor (to be de-
termined) that controls the linear interpolation (or extrapolation) betweenf̃ α(x f , t) and
f ∗α (xb, t), a fictitious equilibrium distribution function given by

f (∗)α (xb, t) = wαρ(x f , t)

[
1+ 3

c2
eα · ubf + 9

2c4
(eα · u f )

2− 3

2c2
u f · u f

]
. (18)

In the above,u f ≡ u(x f , t) is the fluid velocity near the wall andubf is to be chosen. It is
emphasized here that the weighting factorχ depends on howubf is chosen. However, the
choice ofubf is not unique. For example, eitherubf = u f or a linear extrapolation using
ubf = (1− 1)u f /1+ uw/1 appears reasonable.

To determineχ in Eq. (17), FH considered flows under the condition

L/(cT)¿ 1, (19)

i.e., the flow has an intrinsic characteristic time scaleT that is much larger than the advection
time on the lattice scale,L/c. This “slow-flow” condition enabled FH to approximate
fᾱ(x f , t + δt) in Eq. (16) by fᾱ(x f , t),

fᾱ(x f = xb + eᾱδt, t + δt) = fᾱ(x f , t)+ δt ∂ fᾱ
∂t
+ · · · .

For the purpose of the order-of-magnitude estimate, it is seen thatO(∂ fᾱ/∂t)=O( fᾱ/T)
so that

fᾱ(x f , t+δt) = fᾱ(x f , t)

[
1+O

(
δt

T

)]
= fᾱ(x f , t)

[
1+O

(
δx

L

L

cT

)]
≈ fᾱ(x f , t). (20)

It is noted that under condition (19) the neglected terms are ofO( δxL
L

cT ) which are much
smaller than theO( δxL ) terms of present interest (in deriving an accurate boundary condition
for f̃ ᾱ(xb, t)). Applying the Chapman–Enskog expansion in the form given by Eqs. (9)–(10)
and invoking the “slow flow” approximation, one obtains

fᾱ(x f , t) = f (eq)
ᾱ (x f , t)− λ

[
∂ f eq
ᾱ

∂t
+ eᾱ · ∇ f eq

ᾱ

]
+ · · ·

≈ f (eq)
ᾱ (x f , t)− λeᾱ · ∇ f eq

ᾱ + · · · . (21)

For f (eq)
ᾱ given by Eq. (5), the leading order term in∇ f eq

ᾱ is given byρwα(3/c2)eᾱ · ∇u
since the rest are higher order terms in the near incompressible flow limit. Noticing that
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λ= τδt , Eq. (21) becomes

fᾱ(x f , t) ≈ f (eq)
ᾱ (x f , t)− τδtρwα 3

c2
eᾱ · ∇u · eᾱ

= f (eq)
α (x f , t)− 2ρwα

3

c2
u f · eα − τδtρwα 3

c2
eα · ∇u · eα (22)

which approximates the LHS of Eq. (16). To expand the RHS of Eq. (16) in terms of the
small computational parameter

δx

L
= cδt

L
¿ 1, (23)

it is first noted thatf (∗)α (xb, t) in Eq. (18) can be expressed as

f (∗)α (xb, t) = f (eq)
α (x f , t)+ wαρ 3

c2
eα · (ubf − u f ) (24)

so that the RHS of Eq. (16), or Eq. (17), can be rewritten as

f̃ ᾱ(xb, t)

≈ f (eq)
α (x f , t)+ (1− χ)(1− 1/τ) f (1)α (x f , t)+ wαρ 3

c2
eα · (χubf − χu f − 2uw)

= f (eq)
α (x f , t)− (1− χ)(τ − 1)δtwαρ

3

c2
eα · ∇u · eα

+wαρ 3

c2
eα · (χubf − χu f − 2uw). (25)

Based on linear interpolation,ubf ≈ (1− 1)u f/1+ uw/1, expanding the velocityu f near
the wall (xw) using Taylor series, and noticing thatxb− x f = δteα, one obtainsubf −
u f ≈ δt∇u · eα. Equating Eqs. (22) and (25) and matching terms linear inδt results in
χ = (21− 1)/τ . Forubf = u f , we haveubf − u f = 0 in Eq. (25). Matching toO(δt) then
requiresχ = (21− 1)/τ = (21− 1)/(τ − 1). FH found thatubf = (1− 1)u f/1+ uw/1
gives computationally stable results only for1 > 1/2. Hence, they proposed that

ubf = (1− 1)u f /1+ uw/1 and χ = (21− 1)/τ for 1 ≥ 1

2
(26)

and

ubf = u f and χ = (21− 1)/(τ − 1) for 1 <
1

2
. (27)

To recapitulate, there are three independent assumptions that have been made in the
foregoing derivation. These are: (i) the Chapman–Enskog expansion in the form given by
Eqs. (9)–(10) is valid; (ii) the intrinsic time of the unsteady flow must be large compared
with the advection time on the lattice scale given by Eq. (19); (iii) the lattice space must
be small compared with the characteristic length scale of the flow as given by Eq. (23) so
that the Taylor series expansion for the velocity field near the wall is valid. There have been
a large number of papers in the existing literature regarding the validity and usefulness of
Chapman–Enskog expansion for the solution to the Boltzmann equation. The “slow flow”
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FIG. 3. Lattice distribution in channel flow simulations with arbitrary1.

condition is introduced to simplify the derivation of the boundary condition forfα; the
implication of this assumption will be briefly addressed later in comparing the computational
results with that based on the conventional bounce-back scheme. The last assumption is a
typical computational resolution requirement.

Equation (17) is essentially a linear interpolation (or extrapolation) and is used continu-
ously in the computation. When the weighting factorχ becomes too large, instability may
develop. For1≥ 1/2, |χ | = |21− 1|/τ is always less than 2 since the positivity of the
viscosity in the LBE scheme requiresτ >1/2. For1<1/2, |χ | = |(21− 1)/(τ − 1)| and
it may become too large whenτ is near 1. To illustrate this point, a fully developed pressure
driven 2-D channel flow is considered. The grid arrangement is shown in Fig. 3. For steady
flow, a constant pressure gradient∇p along thex-direction is applied and can be treated as
a body force. This is included [32] after the collision step by

f̃ α(xi , t) = f̃ α(xi , t)− wα 3

c2

dp

dx
eα · x̂, (28)

wherex̂ is the unit vector along thex-axis. The boundary condition for̃f α(xi , t) on the wall
follows those given by Eqs. (17), (18), (26), and (27). At the inlet (i = 1) and exit (i = Nx,
in which Nx is the number of lattices in thex-direction) the following is imposed,

fα(i = 1, j ) = fα(i = 2, j ), (29)

fα(i = Nx, j ) = fα(i = Nx − 1, j ). (30)

With Eq. (29), the velocity profile at the inlet,ux(i = 2, j ), is not needed. Instead, the fully
developed velocity profile is sought as part of the solutions. In this part of the investigation,
Ny= 35 is used. The exact solution for the velocity profile (given by Eq. (36)) is used
as the velocity initial condition which differs from the final steady state solution due to
numerical errors. The equilibrium distribution functionf (eq)

α based on the exact solution



316 MEI, LUO, AND SHYY

FIG. 4. (a) Regions of stability and instability in the LBE computation for fully developed 2-D channel flow
using FH’s boundary condition, Eqs. (17), (18), (26), (27), for1<1/2. (b) Regions of stability and instability
in the LBE computation for 2-D channel flow entrance problem using FH’s boundary condition, Eqs. (17), (18),
(26), (27), for1<1/2.

for the velocity profile is used as the initial condition forfα. The pressure gradient is set to
dp
dx =−1.0× 10−6. All computations are carried out using double precision.

For1<1/2, it is found that the computation is unstable for certain range of values of
τ . Figure 4a shows the stability–instability boundaries in the (τ,1) space obtained from a
large number of computations. For1<0.2, the computation becomes unstable whenτ <1.
The large instability region is an apparent source of concern for FH’s scheme when1<1/2
since lower viscosity can only be achieved whenτ is close to 1/2.

One may speculate that the instability in the above example results from the lack of
specifying an inlet velocity profile,ux(y), or due to the extrapolation offα at the inlet given
by Eq. (29). To examine this possibility, a channel flow entrance problem is considered.
Uniform velocity profiles,ux(y)=−(H2/12ρν)(dp/dx) anduy(y)= 0 in which H is the
channel height, are specified ati = 1.5 (half-way between the first and second lattices) and
the distribution functionsfα(i = 1, j ) for α= 1, 2, and 8 are obtained using Eq. (17) with
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χ = 0 in accordance with1= 1/2 at i = 1.5. The boundary conditions on the wall are
based on Eqs. (17), (18), (26), and (27). The exit boundary condition for thefα ’s is given by
Eq. (30). Hence the extrapolation forfα at the inlet is completely eliminated and the velocity
profiles at the inlet are exactly given. Two types of initial conditions are used. Whenever
possible, the equilibrium distribution functions corresponding to the uniform inlet velocity
are specified att = 0 throughout the flow field. This works for relatively larger values ofτ .
However, instability can be encountered whenτ is considerably larger than the upper dash
curve shown in Fig. 4a for the same value of1 (<1/2). A second type of initial condition is
thus implemented. A converged solution at a relatively large value ofτ is used as the initial
condition for a smaller value ofτ . The value ofτ is incrementally decreased to obtain the
converged solutions for the new, smaller values ofτ . When the actual instability region is
approached, the increment inτ is maintained as small as 0.01 or 0.005. In the computation,
dp
dx =−1.0×10−6, Ny= 35, andNx = 65 are used. When the Reynolds number is low (due
to the use of the small pressure gradient and largerτ ), the exit velocity profile is very close
to the exact solution corresponding to the fully developed channel flow which validates the
solution procedure.

The stability–instability boundaries obtained through a large number of computations
are shown in Fig. 4b. It is noted that the stability–instability boundaries are very similar to
that shown in Fig. 4a for the fully developed channel flow despite the dramatic difference
in the inlet boundary condition. Thus the source of the instability must result from the
implementation of the solid wall condition. An alternative scheme must be developed to
overcome this shortcoming.

B. Improved Treatment for a Curved Boundary

We realize that the flexibility in the construction off (∗)α (xb, t) is the key to achieving an
improved computational stability as well as accuracy. Sinceχ = (21 − 1)/(τ − 1) given
by Eq. (27) leads to a larger value ofχ whenτ is close to 1, it is desirable to reduce the
magnitude ofχ by increasing the magnitude of the denominator in the expression forχ .
For1 ≥ 1/2, ubf is the fictitious fluid velocity inside the solid and the denominator forχ

is τ . For1 < 1/2, ubf was chosen by FH to beu f which is the fluid velocity atx f and it
leads to (τ − 1) in the denominator forχ . Thus, we propose to use Eq. (26) for1 ≥ 1/2
and use

ubf = uff = u f (x f + eᾱδt, t) for 1 <
1

2
. (31)

Thus

ubf − u f = u f (x f + eᾱδt, t)− u f (x f , t) = −δt∇u · eα. (32)

This requires

−τ(1− χ)(1− 1/τ)− χ = 21− τ (33)

to match theO(δt) terms in equating Eqs. (22) and (25). Hence

χ = (21− 1)/(τ − 2) for 1 <
1

2
. (34)
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FIG. 5. (a) Regions of stability and instability in the LBE computation for fully developed 2-D channel
flow using the present boundary condition, Eqs. (17), (18), (26), (31), (34), for1<1/2. (b) Regions of stability
and instability in the LBE computation for the 2-D channel flow entrance problem using the present boundary
condition, Eqs. (17), (18), (26), (31), (34), for1<1/2.

To test the improvement in the stability, the steady state, fully developed, pressure driven
2-D channel flow is again considered. Equations (31), (34) are used in lieu of Eq. (27). The
rest of the implementation is exactly the same as described in the last section. Figure 5a
shows the stability–instability boundary in the(τ,1) space for the fully developed channel
flow. By comparing Fig. 5a with Fig. 4a, the improvement in the stability of the present
treatment for this simple geometry case is clearly seen.

For the channel flow entrance problem, boundary conditions at the inlet and exit and
the procedure for specifying the initial conditions are the same as described in the last
section. Equations (31), (34) are used to replace Eq. (27) for the solid wall. The stability–
instability boundary in the(τ,1) space for the entrance flow problem is shown in Fig. 5b.
Close agreement in the stability–instability boundaries between Figs. 5a and 5b suggests
that the improvement in the computational stability is not related to the treatment of the
inlet boundary conditions. The improvement results rather from the different treatment in
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the solid wall boundary condition. A direct consequence of this improvement is that lower
values ofτ , or lower viscosityν, can now be used.

One may speculate at this point thatu f (x f + 2eᾱδt, t) can also be used forubf when
1<1/2. This would further improve the stability sinceχ = (21 − 1)/(τ − 3). This is
correct in principle. However, since the use ofu f (x f + eᾱδt, t) asubf already allows the
use ofτ whose value is close to 1/2, there is little practical need to useu f that is too far
away from the wall.

For transient flows, a second-order extrapolation can be used for

ubf = 1− 1

1
u(x f , t)+ 1

1
u(xw, t)+ 1−1

1(1+1) [u(xw, t)− (1+1)u(x f , t)

+1u(x f + eᾱδt, t)] for 1 >
1

2
. (35)

This treatment helps to improve the accuracy in the velocity approximation whenu(x, t) is
not well resolved near the wall. Finally, it is easily seen that the present boundary condition
treatment can be extended to 3-D flow problems involving curved geometry. The efficacy
of such an extension will be examined in another paper.

III. RESULTS AND DISCUSSIONS

For the proposed boundary condition treatment to be useful, several issues need to be
addressed: spatial and temporal accuracy, ability to handle geometric singularity, and the
flexibility to handle complex geometry. Channel flows with constant and sinusoidally oscil-
lating pressure gradients with analytic solutions are used to assess the spatial and temporal
accuracy. The Stokes first problem (i.e., the flow due to an impulsively started wall) allows
one to examine the response of the computed flow field to an imposed singular acceleration.
The standard lid-driven cavity flow has a bounded domain but possesses stress or vorticity
singularities near the corners between the moving and stationary walls. Finally, flow over a
column of circular cylinders is the case used to assess the impact of the boundary treatment
on the accuracy of the flow field around a curved boundary.

A. Pressure Driven Channel Flows

At steady flow, the exact solution for thex-velocity profile is given by

uexact(y) = −1

2

dp

dx

H2

ρν
(η2− η), (36)

whereH = Ny−3+21 andη= y/H = ( j −2+1)/H . To assess the computational error
of the LBE solution of the velocity, uLBE(y), the following relative L2-norm error is defined

E2 =
{∫ H

0 [uLBE(y)− uexact(y)]2 dy
}1/2[ ∫ H

0 u2
exact(y) dy

]1/2 . (37)

With the oscillating pressure gradient,dp
dx = Be−iωt , the exact solution can be easily

expressed in complex variables. An important parameter in this flow is the Stokes number
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Stdefined as

St=
√

H2ω

ν
. (38)

The Stokes number is the ratio of the channel heightH to the thickness of the Stokes layer√
ν/ω. Since the error can vary with time, a time average over one period (T = 2π/ω) is

needed and the relative error is

E2 =
{∫ T

0

∫ H
0 [uLBE(y, t)− uexact(y, t)]2 dy dt

}1/2[ ∫ T
0

∫ H
0 u2

exact(y, t) dy dt
]1/2 . (39)

In the BGK model,1t =1x=1y= 1. Comparing with the channel heightH = Ny− 3+
21, the dimensionless grid size (or grid resolution) isH1.

Figure 6a shows the dependence of the relativeL2-norm error on the channel height
H for τ = 0.55 and1= 0.0, 0.25, and 0.5. A maximum value ofNy= 131 is used. The
second-order accuracy is demonstrated in the range ofH investigated. It has been well
established that the accuracy of the LBE method for the interior points is of second order.
The fact that the overall accuracy is of second order in the present case means that the
accuracy in the boundary condition is at least of second order. It is worth noticing that the
derivation given in Section II ensures thatfα is second-order accurate near the wall. It does
not guarantee the second-order accuracy of the velocity field near the wall. To address this
issue, the wall slip velocity,uw = ux(y= 0), is evaluated using a second-order extrapolation
based onux(y=1), ux(y= 1+ 1), andux(y= 2+ 1). Since the true wall velocity in
the pressure driven channel flow is zero, the wall slip velocityuw provides a measure of
the accuracy for the treatment of the wall velocity. Figure 6b shows the dependence ofuw,
normalized by the centerline velocityumax=−(H2/8ρν)(dp/dx), on H for1= 0.0, 0.25,
and 0.5 withτ = 0.55. Quadratic convergence is clearly observed in all three cases which
demonstrates the second-order accuracy of the velocity field near the solid wall. This is
entirely consistent with the results shown in Fig. 6a which involves global convergence
rather than the local(y= 0) convergence. Figure 6c shows the relative error as a function
of1 using the present boundary treatment (Eqs. (17), (18), (26), (31), (34)) for 0≤1≤ 1.
The error in the range of 0≤1≤ 1/2 is comparable to that in the range of 1/2<1≤ 1.
The present boundary condition treatment does not induce larger computational error and
is substantially more robust. Furthermore the second-order accuracy is achieved in general
by the present treatment for1≤ 1/2.

Figure 7 shows the dependence of the relativeL2-norm error on the channel heightH
in the oscillating pressure driven channel flow for Stokes numberSt= H

√
ω/ν= 1 and 8.

ForSt= 1, the Stokes layer is as thick as the channel height H. For1= 0.25, 0.5, and 0.75,
second-order accuracy in space is clearly demonstrated. Since the time stepδt in LBE is
equal to the spatial resolutionδx, the accuracy in time must also be of second-order in
order for the time-averagedL2-norm error to have a slope of 2 in Fig. 7. ForSt= 8, the
Stokes layer thickness is about 1/8 of the channel height so that the computational error
due to the insufficient resolution of the Stokes layer is a significant part of the error. For
1= 0.25, the first lattice in the flow field is only a quarter of the lattice size away from
the wall. The Stokes layer is thus better resolved for1= 0.25 (denoted by solid circles in
Fig. 7) than for1= 0.5 and 0.75. However, asH increases, the difference between1= 0.25
and1= 0.5 and 0.75 becomes smaller since all have reasonable resolutions in the Stokes



FIG. 6. (a) Dependence of relativeL2-norm error on the lattice resolutionH = Ny− 3+ 21, in steady state
pressure-driven channel flow simulations. (b) Quadratic convergence of the wall slip velocity in steady state
pressure-driven channel flow simulations. (c) RelativeL2-norm error as a function of1 in steady state pressure-
driven channel flow simulations.

321



322 MEI, LUO, AND SHYY

FIG. 7. Dependence of theL2-norm error on the lattice resolutionH = Ny− 3+ 21 in oscillating pressure
driven channel flow. Stokes numberSt= H

√
ω/ν.

layer. Although the slope for the error curve for1= 0.25 is observed to be about 1.5 that
is less than 2, it is an indication of the better-than-expected accuracy at the low resolu-
tion end.

B. Stokes First Problem: Flow Due to an Impulsively Started Wall

For a wall located aty= 0 that is impulsively started, an unsteady Stokes layer of thickness
O(
√
νt) develops near the wall. For a fixed-grid computation, the error at small time is

expected to be large due to insufficient spatial resolution. In the LBE method, this is also
compounded by the use of fixedδt (= δx= δy= 1). Figure 8 shows the velocity profiles
at t = 100 (in lattice unit). The wall velocity isV = 0.1 in lattice unit. The relaxation time
τ = 0.52 gives kinematic viscosityν= 0.0067. Similar to the oscillating pressure driven
channel flow, the error is smaller for1= 0.25 than for1= 0.5 and 0.75 due to a better
spatial resolution near the wall. Figure 9 shows the temporal variation of the relativeL2-
norm error defined as

E2 =
{∫∞

0 [uLBE(y, t)− uexact(y, t)]2 dy
}1/2[∫∞

0 u2
exact(y, t) dy

]1/2 (40)

for 1= 0.25, 0.5, and 0.75. The result using the standardbounce-back on the link(BBL)
scheme, which always sets1= 0.5, is also shown. The large relative errors in the beginning
are due to the smaller values of the denominator in the above equation. It should be empha-
sized that this flow at small time is difficult to deal with for any computational technique due
to the singular acceleration and large spatial gradient. For an impulsively started Couette
flow, the long-time solution approaches the exact linear velocity profile because the LBE
method is a second-order accurate one. It is interesting to note that the present boundary
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FIG. 8. Velocity profiles att = 100 (lattice unit) of an impulsively started plate with various values of1. The
bounce back on the link (BBL) always sets1= 1/2.

condition treatment for1= 0.5 gives a slightly smaller error than the BBL scheme in this
highly transient case. In such a transient flow, the computational accuracy in the near-wall
region is typically dictated by the near-wall spatial resolution which must be smaller than
the Stokes layer thickness in order to resolve the local flow field. In a finite difference
calculation for such a flow,δt andδx can be independently chosen. Ifδx is not sufficiently
small, further reduction inδt will not lead to improvement in accuracy. At smallt , neither
the BBL scheme nor the present treatment resolved the Stokes layer so that the error is large.
After the Stokes layer grows to a certain thickness, the spatial resolution becomes adequate

FIG. 9. RelativeL2-norm error of the velocity profileux(y) during the initial transient of the impulsively
started plate with various values of1. The “linear” version of the boundary condition corresponds to Eq. (26).
The “quadratic” version corresponds to Eq. (35). The BBL is limited to1= 0.5 only.
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FIG. 10. Velocity profiles at the center(x/H = 1/2) in lid-driven cavity flow with various values of1 at
Re= 100.

and the accuracy then improves. In view of the “slow flow” condition (19) introduced in
the derivation, the performance of the current boundary treatment is comparable or better
than the conventional bounce-back on the link scheme.

C. Flow in a Lid-Driven Square Cavity

Figure 10 shows the velocity profiles at the center (x/H = 1/2) of the cavity of widthH
atRe= 100 withτ = 0.6. Only 35×35 lattices are used and the cavity width isH = Nx−3+
21= 32+1. This requires the lid velocity to beV = νRe/H = 3.33/H in the lattice unit. It
has a negligible compressibility effect forH ∼ 32. A well-resolved finite difference solution
for the velocity field based on the stream function-vorticity formulation is also shown for
comparison. The velocity profile with1= 0.1 agrees well with the finite difference solution.
For1= 0.5, the result is rather reasonable with such a resolution. The difference is slightly
larger on the negative velocity part for1= 0.9. The corner singularity in stress (or vorticity)
is well handled forτ = 0.6 andNx = 35. However, forτ close to 0.5 and withNx = 35,
the corner singularity induces wiggles in the velocity field. This issue will be examined
elsewhere. The flow field forRe= 1000 is obtained with 67× 67 lattices using1= 0.1,
0.5, and 0.9. Similar behavior in the velocity profiles is observed.

D. Uniform Flow over a Column of Circular Cylinders

To simulate the external flow over a single cylinder would require placing the outer
boundary far away from the cylinder. In order to keep the computational effort at a reason-
able level in using constant space lattices, a column of circular cylinders of radiusr and
center-to-center distanceH is considered instead. The flow field that needs to be computed
is thus limited to−H ≤ y ≤ H . At y=−H , the lattice isj = 2. The boundary conditions
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at j = 1 for the fα ’s are given by the following symmetry properties,

f0(i, 1) = f0(i, 3), f1(i, 1) = f1(i, 3), f2(i, 1) = f8(i, 3),

f3(i, 1) = f7(i, 3), f4(i, 1) = f6(i, 3), f5(i, 1) = f5(i, 3), (41)

f6(i, 1) = f4(i, 3), f7(i, 1) = f3(i, 3), f8(i, 1) = f2(i, 3).

Similar conditions hold aty= H for j = Ny. At the inlet, the uniform velocity,u=V , is
specified ati = 1.5. Using1= 0.5,χ = 0, Eq. (17) is applied to obtain thefα ’s at i = 1. At
the exit, a simple extrapolation is used,

fα(Nx, j ) = 2 fα(Nx − 1, j )− fα(Nx − 2, j ) for α = 4, 5, and 6. (42)

On the surface of the circular cylinder, Eqs. (17), (18), (26), (31), and (34) proposed in this
paper are used to update the boundary conditions for thefα ’s.

Figure 11 shows the velocity profileu(x= 0, y)/V for H/r = 20 atRe= 2Vr/ν= 10
usingr = 3.5. Two values of relaxation timeτ(=0.505 and 0.525) are used. Forr = 3.5, there
are only 7 lattices from the front to the back stagnation points. The finite difference solution
is obtained using body-fitted coordinates [33] and over 200 grid points are distributed along
the upper surface of the circle. These two solution withτ = 0.505 andτ = 0.525 are virtually
identical to each other and they are both close to the finite difference solution. Figure 12
shows the centerline(y= 0) velocity variations, upstream and downstream, respectively,
at Re= 10 and 40. The sharp gradient near the front stagnation point, the length of the
separation bubble, the maximum of the separation bubble velocity, and the recovery of
the wake velocity are all in excellent agreement with the well resolved finite difference
solution.

As can be seen now, an important improvement of the present boundary condition treat-
ment over the bounce-back scheme is that it can preserve the accuracy of the geometry

FIG. 11. Velocity profiles atx= 0 for uniform flow over a column of cylinders. The cylinder has a diameter
(2r ) of 7 lattice units. The cylinder center-to-center distanceH = 70 lattice units.
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FIG. 12. Centerline (y= 0) velocity variation for a uniform flow over a column of cylinders. Finite difference
results are based onω − ψ formulation and are well resolved. (a) Upstream; (b) downstream.

under consideration. To further demonstrate this point, consider flow over a circular cylin-
der of radius (r ) with the coordinate centered at the center of the cylinder. Forr = 3.4
and 3.8, the front stagnation points are located atx=−3.4 and 3.8, respectively. With
the bounce-back on the link (BBL) scheme, the front stagnation points in both cases will
be placed atx=−3.5 which is half-way between the lattice atx=−4 andx=−3 on the
centerline. In the present method,1= 0.6 and 0.2 for r= 3.4 and 3.8, respectively. The
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FIG. 13. Comparison of the velocity profiles atx= 0 for r = 3.0, 3.2, 3.4, 3.5, 3.6, 3.8, and 4.0 for Re= 10
andH/r = 20.

difference in1 can be accurately incorporated in the evaluation off̃ ᾱ(xb, t). This implies
that although the boundary links forr = 3.4 will be different from those forr = 3.8, the
flow fields based onr = 3.4 andr = 3.8 should be nearly the same when the coordinates
are normalized by the radiusr . To validate this point, a series of computations are carried
out for r = 3.0, 3.2, 3.4, 3.5, 3.6, 3.8, and 4.0 forH/r = 20 at Re= 10. The profiles of
the dimensionless x-component velocityux/U as a function ofy/r at x= 0 are compared
for these seven different radiir in Fig. 13. Excellent agreement is observed. Figure 14
compares theux/U as a function ofx/r at y= 0 for both the downstream and upstream
regions for these seven different radii. Again, all seven cases compare very well even in the
near wall region. This clearly demonstrates that the present boundary condition treatment
has maintained geometric fidelity even with coarse grid resolutions.

It is noted that the interpolation for̃f ᾱ(xb, t) given by Eq. (17) is carried along the line
in the direction ofeα. The results for flow over a cylinder are quite satisfactory. Other
interpolation procedures can certainly be devised to use more information on neighboring
lattices in the flow field. However, this will result in a lot more complications in the imple-
mentation. It is not clear if such an attempt will necessarily lead to further improvement
over the present approach.

IV. CONCLUSION

In this work a second-order accurate boundary condition treatment for the lattice
Boltzmann equation is proposed. A series of studies are conducted to systematically vali-
date the accuracy and examine the robustness of the proposed boundary condition in steady
and unsteady flows involving flat and curved walls. Compared with the existing method for
treating boundary condition in the lattice Boltzmann method, the proposed treatment has
the following advantages: (i) It can preserve the geometry of interest without truncating
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FIG. 14. Comparison of the centerline velocity forr = 3.0, 3.2, 3.4, 3.5, 3.6, 3.8, and 4.0 for Re= 10 and
H/r = 20. (a) Upstream region; (b) downstream region.

it into a series of stair steps. (ii) The boundary treatment generally results in solutions of
second-order accuracy for the velocity field in space, and in time for some cases. (iii) Com-
pared with the widely used bounce-back on the link scheme, the present treatment gives
comparable or better results for the flow field under otherwise identical computational
parameters.
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